Moda
La moda es el valor que tiene mayor frecuencia absoluta.
Se representa por Mo.
Se puede hallar la moda para variables cualitativas y cuantitativas.
Hallar la moda de la distribución:
2, 3, 3, 4, 4, 4, 5, 5 Mo= 4
Si en un grupo hay dos o varias puntuaciones con la misma frecuencia y esa frecuencia es la máxima, la distribución es bimodal o multimodal, es decir, tiene varias modas.
1, 1, 1, 4, 4, 5, 5, 5, 7, 8, 9, 9, 9Mo= 1, 5, 9
Cuando todas las puntuaciones de un grupo tienen la misma frecuencia, no hay moda.
2, 2, 3, 3, 6, 6, 9, 9
Si dos puntuaciones adyacentes tienen la frecuencia máxima, la moda es el promedio de las dos puntuaciones adyacentes.
0, 1, 3, 3, 5, 5, 7, 8Mo = 4
Cálculo de la moda para datos agrupados
1º Todos los intervalos tienen la misma amplitud.
Li-1 es el límite inferior de la clase modal.
fi es la frecuencia absoluta de la clase modal.
fi--1 es la frecuencia absoluta inmediatamente inferior a la en clase modal.
fi-+1 es la frecuencia absoluta inmediatamente posterior a la clase modal.
ai es la amplitud de la clase.
También se utiliza otra fórmula de la moda que da un valor aproximado de ésta:
Ejemplo
Calcular la moda de una distribución estadística que viene dada por la siguiente tabla:
fi | |
---|---|
[60, 63) | 5 |
[63, 66) | 18 |
[66, 69) | 42 |
[69, 72) | 27 |
[72, 75) | 8 |
100 |
Mediana
Es el valor que ocupa el lugar central de todos los datos cuando éstos están ordenados de menor a mayor.
La mediana se representa por Me.
La mediana se puede hallar sólo para variables cuantitativas.
Cálculo de la mediana
1 Ordenamos los datos de menor a mayor.
2 Si la serie tiene un número impar de medidas la mediana es la puntuación central de la misma.
2, 3, 4, 4, 5, 5, 5, 6, 6Me= 5
3 Si la serie tiene un número par de puntuaciones la mediana es la media entre las dos puntuaciones centrales.
7, 8, 9, 10, 11, 12Me= 9.5
Cálculo de la mediana para datos agrupados
La mediana se encuentra en el intervalo donde la frecuencia acumulada llega hasta la mitad de la suma de las frecuencias absolutas.
Es decir tenemos que buscar el intervalo en el que se encuentre .
Li-1 es el límite inferior de la clase donde se encuentra la mediana.
es la semisuma de las frecuencias absolutas.
Fi-1 es la frecuencia acumulada anterior a la clase mediana.
ai es la amplitud de la clase.
La mediana es independiente de las amplitudes de los intervalos.
Ejemplo
Calcular la mediana de una distribución estadística que viene dada por la siguiente tabla:
fi | Fi | |
---|---|---|
[60, 63) | 5 | 5 |
[63, 66) | 18 | 23 |
[66, 69) | 42 | 65 |
[69, 72) | 27 | 92 |
[72, 75) | 8 | 100 |
100 |
100 / 2 = 50
Clase modal: [66, 69)
2.3.4 La mediana
Consideramos una variable discreta X cuyas observaciones en una tabla estadística han sido ordenadas de menor a mayor. Llamaremos mediana, Medal primer valor de la variable que deja por debajo de sí al de las observaciones. Por tanto, si n es el número de observaciones, la mediana corresponderá a la observación [n/2]+1, donde representamos por la parte entera de un número.En el caso de variables continuas, las clases vienen dadas por intervalos, y aquí la fórmula de la mediana se complica un poco más (pero no demasiado): Sea (li-1,li] el intervalo donde hemos encontrado que por debajo están el de las observaciones. Entonces se obtiene la mediana a partir de las frecuencias absolutas acumuladas, mediante interpolación lineal (teorema de Thales) como sigue (figura 2.2):
2.3.4.1 Observación
La relación (2.2) corresponde a definir para cada posible observación, , su frecuencia relativa acumulada, F(x), por interpolación lineal entre los valores F(lj-1) = Fj-1 y F(lj) = Fj de forma queDe este modo, Med es el punto donde . Esto equivale a decir que la mediana divide al histograma en dos partes de áreas iguales a .
2.3.4.2 Observación
Entre las propiedades de la mediana, vamos a destacar las siguientes:- Como medida descriptiva, tiene la ventaja de no estar afectada por las observaciones extremas, ya que no depende de los valores que toma la variable, sino del orden de las mismas. Por ello es adecuado su uso en distribuciones asimétricas.
- Es de cálculo rápido y de interpretación sencilla.
- A diferencia de la media, la mediana de una variable discreta es siempre un valor de la variable que estudiamos (ej. La mediana de una variable número de hijos toma siempre valores enteros).
- Si una población está formada por 2 subpoblaciones de medianas Med1 y Med2, sólo se puede afirmar que la mediana, Med, de la población está comprendida entre Med1 y Med2
- El mayor defecto de la mediana es que tiene unas propiedades matemáticas complicadas, lo que hace que sea muy difícil de utilizar en inferencia estadística.
- Es función de los intervalos escogidos.
- Puede ser calculada aunque el intervalo inferior o el superior no tenga límites.
- La suma de las diferencias de los valores absolutos de n puntuaciones respecto a su mediana es menor o igual que cualquier otro valor. Este es el equivalente al teorema de König (proposición 2.1) con respecto a la media, pero donde se considera como medida de dispersión a:
ESCRIBA LO IMPORTANTE DE QUE ES; MODA MEDIANA Y MEDIA.
ResponderEliminarSUBRAYE LAS IDEAS PRINCIPALES Y ESCRIBA EN EL PORTAFOLIO.